Somnath Maji's
Research Group

Bio-Inspired Catalysis Lab


Publications
  1. Tetrazole-Substituted Isomeric Ruthenium Polypyridyl Complexes for Low Overpotential Electrocatalytic CO2 Reduction B. Giri, A. Mahata, T. Kella, D. Shee, F. D. Angelis, S. Maji J. Catal., 2022, 405, 15-23.

    (Impact Factor:7.92)

  2. Photolability of NO in ruthenium nitrosyls with pentadentate ligand induces exceptional cytotoxicity towards VCaP, 22Rv1 and A549 cancer cells under therapeutic condition S. Kumbhakar, P. Gupta, B. Giri, A. Muley, K. S. Karumban, A. Misra, S. Maji J. Mol. Struct., 2022, 1265, 133419.

    (Impact Factor:3.2)

  3. Mononuclear cobalt(II) complexes with Polypyridyl Ligands: Synthesis, Characterization, DNA interactions and in vitro cytotoxicity towards human cancer cells K. S. Karumban, R. Raut, P. Gupta, A. Muley, B. Giri, S. Kumbhakar, A. Misra, S. Maji J. Inorg. Biochem., 2022, 233, 111866

    (Impact Factor:4.155)

  4. Mononuclear Co(II) polypyridyl complexes: synthesis, molecular structure, DNA binding/cleavage, radical scavenging, docking studies and anticancer activities K. S. Karumban, A. Muley, R. Raut, P. Gupta, B. Giri, S. Kumbhakar, A. Misra, S. Maji Dalton Trans., 2022, 51, 000.

    (Impact Factor:4.39)

  5. Synthesis, Characterization, Structural, Redox and Electrocatalytic Proton Reduction Properties of Cobalt Polypyridyl Complexes K. S. Karumban, A. Muley, B. Giri, S. Kumbhakar, T. Kella, D. Shee, S. Maji Inorg. Chim. Acta, 2022, 529, 120637.

    (Impact Factor:2.54)

  6. Synthesis, Characterization, Structural and Photophysical properties of Heteroleptic Ruthenium Complexes containing 2-(1H-benzo[d]imidazol-2-yl)quinoline ligand towards Electrocatalytic CO2 reduction S. Kumbhakar, B. Giri, A. Muley, K. S. Karumban, C. Biswas, S. S. K. Raavi, S. Maji J. Chem. Sci., 2022, 134, 1-14

    (Impact Factor:1.57)

  7. High Phenoxazinone Synthase Activity of Two Mononuclear cis-Dichloro Cobalt(II) Complexes with Rigid Pyridyl Scaffold A. Muley, K. S. Karumban, S. Kumbhakar, B. Giri, S. Maji New J. Chem., 2022, 46, 521-532.

    (Impact Factor:3.59)

  8. Design, Synthesis, Structural, Spectral, and Redox Properties and Phenoxazinone Synthase Activity of Tripodal Pentacoordinate Mn(II) Complexes with Impressive Turnover Numbers S. Kumbhakar, B. Giri, A. Muley, K. S. Karumban, S. Maji Dalton Trans., 2021, 50, 16601-16612.

    (Impact Factor:4.39)

  9. Synthesis, Structure, Spectral, Redox Properties and Anti-Cancer Activity of Ruthenium(II) Arene Complexes with Substituted Triazole Ligands A. Muley, K. S. Karumban, P. Gupta, S. Kumbhakar, B. Giri, R. Raut, A. Misra, S. Maji J. Organomet. Chem., 2021, 954 - 955, 122074

    (Impact Factor:2.37)

  10. Synthesis, Characterization, and Water Oxidation Activity of Isomeric Ru Complexes M. A. Hoque, A. D. Chowdhury, S. Maji, J. Benet-Buchholz, M. Z. Ertem, C. GimbertSuriñach, G. K. Lahiri, A. Llobet Inorg. Chem., 2021, 60, 5791 – 5803.

    (Impact Factor:5.0165)

  11. Ruthenium Nitrosyl Complexes with the Molecular Framework [RuII(dmdptz)(bpy)(NO)]n+ (dmdptz: N,N-Dimethyl-4,6-Di(Pyridin-2-yl)-1,3,5-Triazin-2-Amine and bpy: 2,2′-Bipyridine). Electronic Structure, Reactivity Aspects, Photorelease, and Scavenging of NO B. Giri, S. Kumbhakar, K. S. K, A. Muley, S. Maji New J. Chem., 2020, 44, 18732 – 18744.

    (Impact Factor:3.59)

  12. Near-IR Light-Induced Photorelease of Nitric Oxide (NO) on Ruthenium Nitrosyl Complexes: Formation, Reactivity, and Biological Effects B. Giri, T. Saini, S. Kumbhakar, K. S. K, A. Muley, A. Misra, S. Maji Dalton Trans., 2020, 49, 10772 – 10785.

    (Impact Factor:4.39)

  13. Formation, Reactivity, Photorelease, and Scavenging of NO in Ruthenium Nitrosyl Complexes B. Giri, S. Kumbhakar, K. Kalai Selvan, A. Muley, S. Maji Inorg. Chim. Acta, 2020, 502, 119360.

    (Impact Factor:2.54)

  14. Restricted Rotation of an Fe(CO)2(PL3)-Subunit in [FeFe]-Hydrogenase Active Site Mimics by Intramolecular Ligation S. Pullen, S. Maji, M. Stein, S. Ott Dalton Trans., 2019, 48, 5933 – 5939.

    (Impact Factor:4.39)

  15. Self-Quenching and Slow Hole Injection May Limit the Efficiency in NiO-Based DyeSensitized Solar Cells J. Föhlinger, S. Maji, A. Brown, E. Mijangos, S. Ott, L. Hammarström J. Phys. Chem. C, 2018, 122, 13902 – 13910

    (Impact Factor:4.124)

  16. Analysis of Hydrogen-Bonding Effects on Excited-State Proton-Coupled Electron Transfer from a Series of Phenols to a Re(I) Polypyridyl Complex P. Dongare, A. G. Bonn, S. Maji, L. Hammarström J. Phys. Chem. C, 2017, 121, 12569 – 12576

    (Impact Factor:4.124)

  17. Dynamics and Photochemical H2 Evolution of Dye–NiO Photocathodes with a Biomimetic FeFe-Catalyst L. J. Antila, P. Ghamgosar, S. Maji, H. Tian, S. Ott, L. Hammarström ACS Energy Lett., 2016, 1, 1106 – 1111.

    (Impact Factor:23.101)

  18. Judicious Ligand Design in Ruthenium Polypyridyl CO2 Reduction Catalysts to Enhance Reactivity by Steric and Electronic Effects B. A. Johnson, H. Agarwala, T. A. White, E. Mijangos, S. Maji, S. Ott Chem. Eur. J., 2016, 22, 14870 – 14880.

    (Impact Factor:5.236)

  19. Establishing the Family of Diruthenium Water Oxidation Catalysts Based on the Bis(Bipyridyl)Pyrazolate Ligand System S. Neudeck, S. Maji, I. López, S. Dechert, J. Benet-Buchholz, A. Llobet, F. Meyer Inorg. Chem., 2016, 55, 2508 – 2521.

    (Impact Factor:5.0165)

  20. Direct Evidence of a Tryptophan Analogue Radical Formed in a Concerted Electron−Proton Transfer Reaction in Water P. Dongare, S. Maji, L. Hammarström J. Am. Chem. Soc., 2016, 138, 2194 – 2199.

  21. Activating a Low Overpotential CO2 Reduction Mechanism by a Strategic Ligand Modification on a Ruthenium Polypyridyl Catalyst B. A. Johnson, S. Maji, H. Agarwala, T. A. White, E. Mijangos, S. Ott Angew. Chem. Int. Ed., 2016, 55, 1825 – 1829.

    (Impact Factor:15.336)

  22. Efficient light-driven water oxidation catalysis by dinuclear Ru complexes S. Berardi, L. Francàs, S. Neudeck, S. Maji, J. Benet-Buchholz, F. Meyer and A. Llobet Chem. Sus. Chem., 2015, 8, 3688 – 3696.

  23. Highly Efficient Binuclear Ruthenium Catalyst for Water Oxidation A. C. Sander, S. Maji, L. Francàs, T. Böhnisch, S. Decherta, A. Llobet and F. Meyer Chem. Sus. Chem., 2015, 8, 1697 – 1702.

    (Impact Factor: 8.928)

  24. Tunable Electrochemical and Catalytic Features of BIAN- and BIAO-Derived Ruthenium Complexes A. Singha Hazari, A. Das, R. Ray, H. Agarwala, S. Maji, S. M. Mobin and G. K. Lahiri Inorg. Chem., 2015, 54, 4998-5012.

    (Impact Factor:5.0165)

  25. The Oxo-bridge Scenario Behind Single Site WOCs I. López, S. Maji, J. Benet-Buchholz and A. Llobet Inorg. Chem., 2015, 54, 658−666.

    (Impact Factor:5.0165)

  26. Direct observation of key catalytic intermediates in a photoinduced proton reduction cycle with a diiron carbonyl complex M. Mirmohades, S. Pullen, M. Stein, S. Maji, S. Ott, L. Hammarström, and R. Lomoth J. Am. Chem. Soc., 2014, 136, 17366−17369.

    (Impact Factor:15.419)

  27. Mechanistic Insights into Electrocatalytic CO2 Reduction within [RuII(tpy)(NN)X]n+ Architectures T. A. White, S. Maji, and Sascha Ott Dalton Trans., 2014, 15028 – 15037.

    (Impact Factor:4.39)

  28. Oxygen-18 Kinetic Isotope Effects on Water Oxidation by Monomeric and Dimeric Ruthenium Catalysts A. M. Angeles-Boza,M. Zahid Ertem, R. Sarma, C. H. Ibañez, S. Maji, A. Llobet, C. J. Cramer and J. P. Roth Chem. Sci., 2014, 5, 1141-1152.

  29. New Powerful and Oxidatively Rugged Dinuclear Ru WOCs: Control of Mechanistic Pathways by Tailored Ligand Design S. Neudeck, S. Maji, I. Lopez, S. Meyer, F. Meyer and A. Llobet J. Am. Chem. Soc., 2014, 136, 24-27.

    (Impact Factor:15.419)

  30. Molecular Water Oxidation Mechanisms Followed by Transition Metals: State of the Art X. Sala, S. Maji, R. Bofill, J. García-Antón, L. Escriche and A. Llobet Acc. Chem. Res. 2014, 47, 504-516.

    (Impact Factor:22.384)

  31. A Self-Improved Water-Oxidation Catalyst: Is One Site Really Enough? I. López, M. Z. Ertem, S. Maji, J. Benet‐Buchholz, A. Keidel, U. Kuhlmann, P. Hildebrandt, C. J. Cramer, V. S. Batista and A. Llobet Angew. Chem. Int. Ed., 2014, 53, 205 –209.

    (Impact Factor:15.336)

  32. Synthesis, Characterization and Reactivity of Dyad Ru-Based Molecules for Light-Driven Oxidation Catalysis P. Farràs, S. Maji, F. Bozoglian, J. Benet-Buchholz and A. Llobet Chem. Eur. J., 2013, 19, 7162.

    (Impact Factor:5.236)

  33. Mononuclear Ru water oxidation catalysts: discerning between electronic and hydrogen bonding effects S. Maji, I. López, J. Benet-Buchholz and A. Llobet Inorg. Chem., 2013, 52, 3591-3593.

    (Impact Factor:5.0165)

  34. Electronic structure and catalytic aspects of [Ru(tpm)(bqdi)(Cl/H2O)] n , tpm = tris(1- pyrazolyl)methane and bqdi = o-benzoquinonediimine H. Agarwala, F. Ehret, A. Dutta Chowdhury, S. Maji, S. M. Mobin, W. Kaim and G. K. Lahiri Dalton Trans., 2013, 42, 3721-3734.

    (Impact Factor:4.39)

  35. Synthesis, characterization of new isomeric Ru(Cl)2(H3p)(DMSO)2 complexes, their reactivity and linkage isomerization. S. Roeser, S. Maji, J. Benet-Buchholz, J. Pons and A. Llobet Eur. J. Inorg. Chem., 2013, 232-240.

    (Impact Factor:2.524)

  36. Ligand Geometry Directs O-O Bond Formation Pathway in New trans-RuHbpp Based Water Oxidation Catalyst S. Maji, L. Vigara, F. Cottone, F. Bozoglian, J. Benet-Buchholz and A. Llobet Angew. Chem. Int. Ed., 2012, 51, 5967.

    (Impact Factor:15.336)

  37. Correspondence of RuIIIRuII and RuIVRuIII Mixed Valent States in a Small Dinuclear Complex H. Agarwala, T. Scherer, S. Maji, T. K. Mondal, S. M. Mobin, J. Fiedler, F. A. Urbanos, R. Jiménez-Aparicio, W. Kaim and G. K. Lahiri Chem. Eur. J., 2012, 18, 5667.

    (Impact Factor:5.236)

  38. Ruthenium nitrosyl complexes with 1,4,7-trithiacyclononane and 2,2′-bipyridine (bpy) or 2- phenylazopyridine (pap) coligands. Electronic structure and reactivity aspects P. De, S. Maji, A. Dutta Chowdhury, S. M. Mobin, T. K. Mondal and G. K. Lahiri Dalton Trans., 2011, 12527-12539.

    (Impact Factor:4.39)

  39. Reductive Approach to Mixed Valency (n=1−) in the Pyrazine Ligand-Bridged [(acac)2Ru(- L 2− )Ru(acac)2] n (L2−= 2,5-Pyrazine-dicarboxylate) through Experiment and Theory A. Das, T. Scherer, S. Maji, T. K. Mondal, S. M. Mobin, F. A. Urbanos, R. Jiménez-Aparicio, W. Kaim, and G. K. Lahiri Inorg. Chem., 2011, 50, 7040-7049.

    (Impact Factor:5.0165)

  40. Ligand Influence Over the Formation of Dinuclear [2+2] versus Trinuclear [3+3] CuI Schiff Base Macrocyclic Complexes A. Arbuse, S. Mandal, S. Maji, M. A. Martínez, X. Fontrodona, D. Utz, F. W.Heinemann, S. Kisslinger, S. Schindler, X. Sala and A. Llobet Inorg. Chem., 2011, 50, 6878-6889.

    (Impact Factor:5.0165)

  41. Stabilization of {RuNO}6 and {RuNO}7 States in [RuII(trpy)(bik)(NO)]n+ (trpy = 2,2/ :6/ ,2// - Terpyridine, bik = 2,2/ -Bis(1-methylimidazolyl)ketone). Synthesis, Reactivity and Photorelease of Metal Bound Nitrosyl P. De, B. Sarkar, S. Maji, A. K. Das, E. Bulak, S. M. Mobin, W. Kaim and G. K. Lahiri Eur. J. Inorg. Chem., 2009, 2702.

    (Impact Factor:2.524)

  42. Intramolecular Valence and Spin Interaction in meso and rac Diastereomers of a p-Quinonoid Bridged Diruthenium Complex D. Kumbhakar, B. Sarkar, S. Maji, S. M. Mobin, J. Fiedler, F. A. Urbanos, R. Jimenez-Aparicio, W. Kaim and G. K. Lahiri J. Am. Chem. Soc., 2008, 130, 17575-17583.

    (Impact Factor:15.419)

  43. Valence State Analysis via Spectroelectrochemistry in Differently Quinonoid Bridged Diruthenium Complexes [(acac)2Ru(-L)Ru(acac)2] n+ (n = +2, +1, 0, −1, −2) S. Ghumaan, B. Sarkar, S. Maji, V. G. Puranik, J. Fiedler, F. A. Urbanos, R. Jimenez− Aparicio, W. Kaim and G. K. Lahiri Chem. Eur. J., 2008, 14, 10816.

    (Impact Factor:5.236)

  44. Valence State Alternatives in Diastereoisomeric Complexes [(acac)2Ru(- QL)Ru(acac)2] n (QL2− = 1,4-Dioxido-9,10-anthraquinone, n = +2,+1,0,-1,-2) S. Maji, B. Sarkar, S. M. Mobin, J. Fiedler, F.A. Urbanos, R. Jimenez-Aparicio, W. Kaim and G. K. Lahiri Inorg. Chem., 2008, 47, 5204-5211.

    (Impact Factor:5.0165)

  45. Formation, Reactivity and Photorelease of Metal Bound Nitrosyl in [Ru(trpy)(L)(NO)]n+ (trpy = 2,2/ :6/ ,2// -Terpyridine, L = 2-Phenylimidazo[4,5-f]1,10-phenanthroline) S. Maji, B. Sarkar, M. Patra, A. K. Das, S. M. Mobin, W. Kaim, and G. K. Lahiri Inorg. Chem., 2008, 47, 3218-3227.

    (Impact Factor:5.0165)

  46. Synthesis, structure and electrochemistry of CO incorporated diruthenium metallacyclic compounds [Ru2(CO)6{μ-η 1 :η1 :η2 :η2 -1,4-Fc2C5H2O}] and [Ru2(CO)6{μ-η 1 :η1 :η2 :η2 -1,5- Fc2C5H2O}] P. Mathur, S. Chatterjee, A. Das, G. K. Lahiri, S. Maji and S. M. Mobin J. Organomet. Chem., 2007, 692, 1601.

    (Impact Factor:2.37)

  47. Non−innocent behaviour of ancillary and bridging ligands in homovalent and mixed−valent ruthenium complexes [A2Ru(−L)RuA2] n , A = 2,4−pentanedionato or 2−phenylazopyridine, L 2− = 2,5–bis(2−oxidophenyl)pyrazine S. Maji, B. Sarkar, S. M. Mobin, J. Fiedler, W. Kaim and G. K. Lahiri Dalton Trans., 2007, 2411-2418.

    (Impact Factor:4.39)

  48. Synthesis and Spectro−electrochemical Aspects of [RuII(trpy)(pdt)(X)]n+ (trpy = 2,2/ :6/ ,2//− terpyridine, pdt = 3−pyridyl−5,6−diphenyl−as− triazine, X = Cl− , CH3CN, NO2 − , NO+ , NO• ). Electrophilicity of {RuII−NO+ } and Photolability of {RuII−NO•} S. Maji, C. Chatterjee, S. M. Mobin, and G. K. Lahiri Eur. J. Inorg. Chem., 2007, 3425.

    (Impact Factor:2.524)

  49. Valence State Distribution in Ruthenium−o−Quinonoid Systems [Ru(trpy)(Cl)(L1 )]+ [1]+ and [Ru(trpy)(Cl)(L2 )]+ [2]+ where L1 = o−Iminobenzoquinone, L2 = o−Diiminobenzoquinone and trpy = 2,2/ :6/ ,2// −Terpyridine S. Maji, S. Patra, S. Chakraborty, D. Janardanan, S. M. Mobin, R. B. Sunoj and G. K. Lahiri Eur. J. Inorg. Chem., 2007, 314

    (Impact Factor:2.524)

  50. Metal−Induced Reductive Ring Opening of 1,2,4,5−Tetrazines: Three Resulting Coordination Alternatives, Including the New Non−Innocent 1,2−Diiminohydrazido(2−) Bridging Ligand System S. Maji, B. Sarkar, S. Patra, J. Fiedler, S. M. Mobin,V. G. Puranik, W. Kaim and G. K. Lahiri Inorg. Chem., 2006, 45, 1316-1325.

    (Impact Factor:5.0165)

  51. Controlling Metal/Ligand/Metal Oxidation State Combinations by Ancillary Ligand (L) Variation in the Redox Systems [L2Ru(−boptz)RuL2] n , boptz = 3, 6−bis(2−oxidophenyl)−1, 2, 4, 5− tetrazine and L= acac− , bpy or pap (2−phenylazopyridine) S. Patra, B. Sarkar, S. Maji, J. Fiedler, F. A. Urbanos, R. Jimenez−Aparicio, W. Kaim, and G. K. Lahiri Chem. Eur. J., 2006, 12, 489

    (Impact Factor:5.236)